| 1 | AIDO Protein-RAG (16B) | Structure & MSA | 0.518 | 0.0 | 0.517 | 0.426 | 0.522 | 0.491 | 0.635 | 0.498 | 0.534 | 0.585 | 0.531 | 0.587 | 0.558 | 0.522 | 0.527 | 0.414 | 0.419 | 0.394 | 0.414 | AIDO Protein-RAG (16B) | Sun, N., Zou, S., Tao, T., Mahbub, S., Li, D., Zhuang, Y., Wang, H., Cheng, X., Song, L., & Xing, E.P. (2024). Mixture of Experts Enable Efficient and Effective Protein Understanding and Design. bioRxiv. |
| 2 | VenusREM | Structure & MSA | 0.518 | 0.005 | 0.495 | 0.454 | 0.533 | 0.459 | 0.65 | 0.495 | 0.524 | 0.577 | 0.529 | 0.582 | 0.549 | 0.492 | 0.534 | 0.397 | 0.355 | 0.322 | 0.368 | VenusREM | Yang Tan, Ruilin Wang, Banghao Wu, Liang Hong, Bingxin Zhou. (2024). Retrieval-Enhanced Mutation Mastery: Augmenting Zero-Shot Prediction of Protein Language Model. ArXiv, abs/2410.21127. |
| 3 | ProSST (K=2048) | Single sequence & Structure | 0.507 | 0.006 | 0.476 | 0.445 | 0.53 | 0.431 | 0.653 | 0.465 | 0.507 | 0.58 | 0.516 | 0.573 | 0.549 | 0.454 | 0.521 | 0.394 | 0.317 | 0.277 | 0.332 | ProSST (K=2048) | Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Ziyi Zhou, Huiqun Yu, Wanli Ouyang, Liang Hong, Bingxin Zhou, Pan Tan. (2024). ProSST: Protein language modeling with quantizied structure and disentangled attention. bioRxiv. |
| 4 | ProSST (K=4096) | Single sequence & Structure | 0.498 | 0.009 | 0.444 | 0.472 | 0.507 | 0.416 | 0.652 | 0.472 | 0.481 | 0.583 | 0.497 | 0.574 | 0.547 | 0.44 | 0.505 | 0.426 | 0.388 | 0.342 | 0.408 | ProSST (K=4096) | Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Ziyi Zhou, Huiqun Yu, Wanli Ouyang, Liang Hong, Bingxin Zhou, Pan Tan. (2024). ProSST: Protein language modeling with quantizied structure and disentangled attention. bioRxiv. |
| 5 | S3F-MSA | Structure & MSA | 0.496 | 0.007 | 0.502 | 0.44 | 0.479 | 0.477 | 0.581 | 0.469 | 0.509 | 0.547 | 0.502 | 0.558 | 0.521 | 0.502 | 0.499 | 0.333 | 0.378 | 0.346 | 0.383 | S3F with MSA retrieval | Zuobai Zhang, Pascal Notin, Yining Huang, Aurelie C. Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang. (2024). Multi-Scale Representation Learning for Protein Fitness Prediction. NeurIPS. |
| 6 | S2F-MSA | Structure & MSA | 0.488 | 0.007 | 0.498 | 0.432 | 0.472 | 0.472 | 0.567 | 0.463 | 0.502 | 0.536 | 0.495 | 0.546 | 0.513 | 0.493 | 0.491 | 0.303 | 0.346 | 0.318 | 0.362 | S2F with MSA retrieval | Zuobai Zhang, Pascal Notin, Yining Huang, Aurelie C. Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang. (2024). Multi-Scale Representation Learning for Protein Fitness Prediction. NeurIPS. |
| 7 | ProSST (K=1024) | Single sequence & Structure | 0.485 | 0.009 | 0.433 | 0.436 | 0.499 | 0.414 | 0.642 | 0.457 | 0.466 | 0.585 | 0.483 | 0.568 | 0.539 | 0.436 | 0.492 | 0.434 | 0.373 | 0.341 | 0.403 | ProSST (K=1024) | Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Ziyi Zhou, Huiqun Yu, Wanli Ouyang, Liang Hong, Bingxin Zhou, Pan Tan. (2024). ProSST: Protein language modeling with quantizied structure and disentangled attention. bioRxiv. |
|